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Old results: the random Potts model

The 3D random Ising model

Classical Ising model on a cubic lattice

H = −J
∑
(i,j)

σiσj − h
∑
i

σi σi = ±1

H = −J
∑
(i,j)

εijσiσj − h
∑
i

σi σi = ±1

where εij ∈ {0; 1} is a random variable.

β

ν
' 0.515(5),

γ

ν
' 1.97(2), ν ' 0.68(2).

New universality class (as predicted by Harris criterion).
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Old results: the random Potts model

The 3D random 4-state Potts model

Classical “spins” lying on the nodes of a cubic lattice:

H = −J
∑
(i,j)

δσi ,σj − h
∑
i

δσi ,0 σi = 0, . . . , q − 1

H = −J
∑
(i,j)

εijδσi ,σj − h
∑
i

δσi ,0 σi = 0, . . . , q − 1,
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Old results: the random Potts model

The 3D random q-state Potts model

A q-dependent random fixed point

q = 2
β

ν
= 0.515(5)

q = 3
β

ν
= 0.539(2)

q = 4
β

ν
= 0.73(2)
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Old results: the random Potts model

The 3D random q-state Potts model

A q-dependent random fixed point (as in 2D)

2 4 8 16 32 64
q

0.14
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0.18
x σ

Pure
Dotsenko  et al. (’95)

PRL (98)

PRE (99), strip

PRE (99), square

Nucl. Phys. (00)
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Recent results: correlated disorder

Correlated disorder

Algebraically correlated couplings(
Jij − J̄

)(
Jkl − J̄

)
∼ ||~rij − ~rkl ||−a

Disorder is relevant when a < d and

ν <
2

a

RG study of the n-components φ4 model in dimension d = 4− ε leads to a new
fixed point (Weinrib-Halperin):

ν =
2

a
(exact), η = O(ε2).

Recent results for the 2D Ising model (a close to 2)
(M. Dudka, A.A. Fedorenko, V. Blavatska, Y. Holovatch, arXiv:1602.07229)

ν =
2

a
+O((2− a)3),

1

4
− 2− a

8
≤ η ≤ 1

4

Compatible with Monte Carlo simulations for the 3D Ising model.
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Recent results: correlated disorder

Numerical generation of configurations of correlated random couplings

Step one: Simulate the 2D Ashkin-Teller model

−βHAT =
∑
(i,j)

[
JATσiσj + JATτiτj + KATσiσjτiτj

]

Two broken Z2-symetries in the low-temperature phase. Order parameters:
magnetization

∑
i σi and polarization

∑
i σiτi .

Self-dual critical line with varying critical exponents:

βAT
σ =

2− y

24− 16y
, βAT

στ =
1

12− 8y
, νAT =

2− y

3− 2y

where y ∈ [0; 4/3] and cos πy2 = 1
2

[
e4KAT − 1

]
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Recent results: correlated disorder

Polarisation-polarisation correlation function of the AT model:

〈σiτi σjτj〉 ∼ |~ri − ~rj |−2βAT
στ /ν

AT

Step two: Generate Ashkin-Teller spin configurations and associate a coupling
configuration of the Potts model to each of them by

Jij =
J1 + J2

2
+

J1 − J2

2
σiτi ∈ {J1, J2},

so that
(Jij − J̄)(Jkl − J̄) ∼ |~ri − ~rk |−a

with a = 2βAT
στ /ν

AT. Self-duality of the random Potts model is preserved.

−βH =
∑
(i,j)

Jijδsi ,sj

BUT a is small and far from a = 2.
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Recent results: correlated disorder

Temperature behaviour of the 8-state Potts model
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Griffiths phase!
Singularity of free energy in a finite range of temperatures, due to the existence of
macroscopic regions with a high concentration of strong couplings and acting as
super-paramagnets.
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Recent results: correlated disorder

Algebraic Finite-Size Scaling in the Griffiths region:
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/
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Critical exponent β/ν depends on disorder correlations (exponent a) and is
compatible with the bound η ≤ 1/4. Stable with disorder strength r = J1/J2.

Independent of the number q of Potts states! (q = 2 to 16 tested)
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Recent results: correlated disorder

Self-averaging ratio (sample-to-sample relative fluctuations)

Rm =
〈m〉2 − 〈m〉2

〈m〉2
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Magnetization is non-self averaging in the Griffiths region.

Rm = Cst =⇒ χ∗ = Ld
[
〈m〉2 − 〈m〉2

]
= LdRm〈m〉

2 ∼ Ld−2β/ν

Hyperscaling is violated for χ̄ = 〈m〉2 − 〈m〉2 but satisfied for χ∗!

In the same way, ν � 1 but ν∗ ' 2/a.
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New (preliminary) results: aperiodic Potts models

Another random fixed-point has similar properties:

independent of the number of states q

hyperscaling violation
γ/ν + 2β/ν 6= d

Griffiths phase.
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hyperscaling violation
γ/ν + 2β/ν 6= d

Griffiths phase.

. . . the Potts McCoy-Wu model.

−βH =
∑
x,y

Jx
(
δσx,y ,σx+1,y + δσx,y ,σx,y+1

)
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−βH =
∑
x,y

Jx
(
δσx,y ,σx+1,y + δσx,y ,σx,y+1

)
Critical behavior determined by disorder fluctuations (thermal fluctuations
irrelevant). Inacessible by perturbative RG but asymptotically exact results using
Strong Disorder Renormalization Group (Fisher). Number of Potts states q shown
to be irrelevant (Senthil, Majumdar).
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New (preliminary) results: aperiodic Potts models

Partial summary

Homogeneous disorder leads a new q-dependent random fixed point

Perturbative RG finds another random fixed point with algebraically
correlated disorder (ν = 2/a)

A different (q-independent) infinite-disorder fixed point in the McCoy-Wu
model (infinitely correlated in one dimension)

A presumably infinite-disorder q-independent fixed point is observed in the
isotropically correlated q-state Potts model.

Old problem/New question:
What about aperiodic modulation of the couplings ?

Monte Carlo simulations observed q-dependent critical exponents

SDRG results were recently shown to give results for the Ising model
comptible with free fermions techniques.

C. Chatelain (IJL) Perturbed Potts model April 8th 2016 13 / 20



New (preliminary) results: aperiodic Potts models

Partial summary

Homogeneous disorder leads a new q-dependent random fixed point

Perturbative RG finds another random fixed point with algebraically
correlated disorder (ν = 2/a)

A different (q-independent) infinite-disorder fixed point in the McCoy-Wu
model (infinitely correlated in one dimension)

A presumably infinite-disorder q-independent fixed point is observed in the
isotropically correlated q-state Potts model.

Old problem/New question:
What about aperiodic modulation of the couplings ?

Monte Carlo simulations observed q-dependent critical exponents

SDRG results were recently shown to give results for the Ising model
comptible with free fermions techniques.

C. Chatelain (IJL) Perturbed Potts model April 8th 2016 13 / 20



New (preliminary) results: aperiodic Potts models

More convenient to study the anisotropic extreme limit:

−βH =
∑
x,y

(
Jh(x)δσx,y ,σx+1,y + Jv (x)δσx,y ,σx,y+1

)
, Jh → +∞, Jv → 0

The transfer matrix tends towards a quantum evolution operator

T (σ′1, σ
′
2, . . . ;σ1, σ2, . . .) = e

β
∑

i

[
Jv
2 δσ′i ,σ

′
i+1

+ Jv
2 δσi ,σi+1

+Jhδσi ,σ′i

]
−→ 〈σ′1, σ′2, . . .|e−βH |σ1, σ2, . . .〉

with the quantum Potts hamiltonian

Ĥ = −
∑
i

q−1∑
σ=1

[
Ji (Ω̂i )

σ(Ω̂i+1)−σ + hi N̂
σ
i

]
where, for q = 4 for instance,

N̂ =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , Ω̂i =


1 0 0 0
0 ω 0 0
0 0 ω2 0
0 0 0 ω3


and

ω = e
2iπ
q
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New (preliminary) results: aperiodic Potts models

Strong Disorder Renormalization Group

Ĥ = −
∑
i

q−1∑
σ=1

[
Ji (Ω̂i )

σ(Ω̂i+1)−σ + hi N̂
σ
i

]

1 2 3 4 5 6

h

J

h h h h h

J J J J
1 2 3 4 5

654321
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Ĥ = −
∑
i

q−1∑
σ=1

[
Ji (Ω̂i )

σ(Ω̂i+1)−σ + hi N̂
σ
i

]
Step one: Find the largest coupling (say J3)

1 2 3 4 5 6

h

J

h h h h h

J J J
1 2 4 5

654321

3
J

C. Chatelain (IJL) Perturbed Potts model April 8th 2016 15 / 20



New (preliminary) results: aperiodic Potts models

Strong Disorder Renormalization Group
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[
Ji (Ω̂i )

σ(Ω̂i+1)−σ + hi N̂
σ
i

]
Step one: Find the largest coupling (say J3)
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h

J

h h h h h

J J J
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J

Step two: Find the q ground states of −J3

∑
σ(Ω̂3)σ(Ω̂4)−σ :

{|00〉, |11〉, . . . , |q − 1,q − 1〉}

Replace the two spins σ3 and σ4 by an effective Potts macro-spin.
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{|00〉, |11〉, . . . , |q − 1,q − 1〉}

Replace the two spins σ3 and σ4 by an effective Potts macro-spin.
Step three: Use perturbation theory to compute an effective transverse field
acting on the new macro-spin

heff =
2h3h4

qJ3

1 2

h

J

h

J1 2

21 heff

5 6

h h

J J4 5

65

C. Chatelain (IJL) Perturbed Potts model April 8th 2016 15 / 20



New (preliminary) results: aperiodic Potts models

Strong Disorder Renormalization Group
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and an effective coupling between the nearest spins is induced
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The Paper-Folding sequence:
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Marginal for q = 2 (Ising) and relevant perturbation for q > 2 (Luck criterion).

Magnetic scaling dimension φ = 1− β/ν independent of q for q > 2 and
r = J1/J2 > 2.5 (contradicts Monte Carlo simulations!)
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BUT dynamical exponent z depends on q !
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New (preliminary) results: aperiodic Potts models

Can we trust SDRG?
SDRG works only if couplings are broadly distributed at the fixed point (for
perturbation theory to hold).
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The ratio between the largest and second-largest couplings does not increase!
Not an infinite-disorder fixed point!?
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New (preliminary) results: aperiodic Potts models

Density Matrix Renormalization Group
(Purely numerical, thermal fluctuations properly taken into account)
Large log-periodic oscillations.
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Magnetic scaling dimension given by SDRG recovered only in the limit
r = J1/J2 −→ +∞.
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DMRG is in agreement with free fermions calculations for any r .
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New (preliminary) results: aperiodic Potts models

Preliminary conclusions

For the Ising model

Paperfolding seq. is marginal: not an infinite-disorder fixed point but a line
of fixed points,

DMRG agrees with free fermions calculations,

SDRG predicts correct dynamical exponent for r � 1 and scaling dimension
only when r −→ +∞

For the q > 2 Potts model

Similar behavior of SDRG flow than with Ising model. No flow towards an
infinite-disorder fixed point ?!

Dynamical exponent z depends on r and q.

But q-independent magnetic exponents.

DMRG calculations will eventually converge...
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