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The 3D random Ising model

Classical Ising model on a cubic lattice
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Classical Ising model on a cubic lattice
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where ¢;; € {0;1} is a random variable.
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The 3D random Ising model

Classical Ising model on a cubic lattice

H:—JZE,‘J‘U,'UJ—hZO'; O';Zi].

(i)
where ¢;; € {0;1} is a random variable.

g ~ 0.515(5), % ~1.97(2), v~ 0.68(2).

New universality class (as predicted by Harris criterion).
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The 3D random 4-state Potts model

Classical “spins” lying on the nodes of a cubic lattice:

H=-J> 050,—hY o0 0;=0,....q—1
(i) i
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Old results: the random Potts model

The 3D random 4-state Potts model

Classical “spins” lying on the nodes of a cubic lattice:

H=-1> €000, —hY 00 0;=0,...,q—1,
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The 3D random 4-state Potts model

Classical “spins” lying on the nodes of a cubic lattice:

H=-1> ¢j0s0;=hY 600 0;=0,...,q—1,
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The 3D random g-state Potts model

A g-dependent random fixed point
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The 3D random g-state Potts model

A g-dependent random fixed point (as in 2D)
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Recent results: correlated disorder

Correlated disorder
Algebraically correlated couplings
(Ji =) (o = ) ~ |17 = Faal| =2

Disorder is relevant when a < d and

v< —
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Recent results: correlated disorder

Correlated disorder

Algebraically correlated couplings

(Ji = ) (s = J) ~ |75 = 7l

Disorder is relevant when a < d and

2
v< —
a

RG study of the n-components ¢* model in dimension d = 4 — ¢ leads to a new
fixed point (Weinrib-Halperin):

v= % (exact), n = O(e?).

Recent results for the 2D Ising model (a close to 2)
(M. Dudka, A.A. Fedorenko, V. Blavatska, Y. Holovatch, arXiv:1602.07229)

2 1 2—a

=Z4+0(2-a) —_
v=-+0(2-2a)) 2 5

Compatible with Monte Carlo simulations for the 3D Ising model.
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Recent results: correlated disorder

Numerical generation of configurations of correlated random couplings

Step one: Simulate the 2D Ashkin-Teller model

—BHAT = Z [JATO','UJ' + AT+ KATU,-UJ-T,-TJ-}
(i)
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Recent results: correlated disorder

Numerical generation of configurations of correlated random couplings
Step one: Simulate the 2D Ashkin-Teller model

—BHAT = Z [JATO','UJ' + AT+ KATU,-UJ-T,-TJ-}
(i)

Two broken Zj-symetries in the low-temperature phase. Order parameters:
magnetization ), o; and polarization ). ;.

Self-dual critical line with varying critical exponents:

BAT _ 2—-y ar_ 1 VAT:2_y
7 24—16y’ 7  12-8y’ 3-2y

where y € [0;4/3] and cos & = 1 {e“KAT - 1}
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Recent results: correlated disorder

Polarisation-polarisation correlation function of the AT model:

—2BT /AT

(oiTioj7;) ~ |Fi — 1}l
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Recent results: correlated disorder

Polarisation-polarisation correlation function of the AT model:
_2BAT /AT

(oiTiojTj) ~ | — 1j]

Step two: Generate Ashkin-Teller spin configurations and associate a coupling
configuration of the Potts model to each of them by

:J1+J2_|_-/1—J2

Jj
T 2

ot € {h, h},

so that

(Jj = N = J) ~ [1i = 7|2

with a = 284T /AT Self-duality of the random Potts model is preserved.

—BH =" Jjls
(i)
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Recent results: correlated disorder

Polarisation-polarisation correlation function of the AT model:
_2BAT /AT

(oiTiojTj) ~ | — 1j]

Step two: Generate Ashkin-Teller spin configurations and associate a coupling
configuration of the Potts model to each of them by

:J1+J2_|_-/1—J2

Jj
T 2

ot € {h, h},

so that

(Jj = N = J) ~ [1i = 7|2

with a = 284T /AT Self-duality of the random Potts model is preserved.

—BH =" Jjls
(i)

BUT a is small and far from a = 2.
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Recent results: correlated disorder

Temperature behaviour of the 8-state Potts model
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Recent results: correlated disorder

Temperature behaviour of the 8-state Potts model
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Recent results: correlated disorder

Temperature behaviour of the 8-state Potts model
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Griffiths phase!
Singularity of free energy in a finite range of temperatures, due to the existence of
macroscopic regions with a high concentration of strong couplings and acting as

super-paramagnets.
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Recent results: correlated disorder

Algebraic Finite-Size Scaling in the Griffiths region:
L
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Critical exponent /v depends on disorder correlations (exponent a) and is
compatible with the bound 1 < 1/4. Stable with disorder strength r = J; / Js.
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Recent results: correlated disorder

Algebraic Finite-Size Scaling in the Griffiths region:
L
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Critical exponent /v depends on disorder correlations (exponent a) and is
compatible with the bound 1 < 1/4. Stable with disorder strength r = J; / Js.

Independent of the number g of Potts states! (¢ = 2 to 16 tested)
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Recent results: correlated disorder

Self-averaging ratio (sample-to-sample relative fluctuations)
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Recent results: correlated disorder

Self-averaging ratio (sample-to-sample relative fluctuations)
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Magnetization is non-self averaging in the Griffiths region.

Rn = Cst = y* = LI[(m)2 — (m) ] = LRop(m) ~ LI—26/"
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Recent results: correlated disorder

Self-averaging ratio (sample-to- sample relative fluctuatlons)
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Rn = Cst = y* = LI[(m)2 — (m) ] = LRop(m) ~ LI—26/"

Hyperscaling is violated for ¥ = (m)2 — (m)? but satisfied for x*!
In the same way, v > 1 but v* ~2/a.
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New (preliminary) results: aperiodic Potts models

Another random fixed-point has similar properties:
@ independent of the number of states g

@ hyperscaling violation

v /v +28/v +d
@ Griffiths phase.
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New (preliminary) results: aperiodic Potts models

Another random fixed-point has similar properties:
@ independent of the number of states g

@ hyperscaling violation

v/v+28/v#d
@ Griffiths phase.
.. the Potts McCoy-Wu model.

_BH = Z JX ((So'x,}/’UX#»l,y + 6UX’Y’UX’Y+1>
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New (preliminary) results: aperiodic Potts models

Another random fixed-point has similar properties:
@ independent of the number of states ¢

@ hyperscaling violation
v /v +28/v +d
@ Griffiths phase.
... the Potts McCoy-Wu model.

_BH = Z JX (60'x1y70'x+1»y + 50'X,y70'x,y+1)

X,y

Critical behavior determined by disorder fluctuations (thermal fluctuations
irrelevant). Inacessible by perturbative RG but asymptotically exact results using
Strong Disorder Renormalization Group (Fisher). Number of Potts states g shown

to be irrelevant (Senthil, Majumdar).
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New (preliminary) results: aperiodic Potts models

Partial summary

@ Homogeneous disorder leads a new g-dependent random fixed point

@ Perturbative RG finds another random fixed point with algebraically
correlated disorder (v = 2/a)

@ A different (g-independent) infinite-disorder fixed point in the McCoy-Wu
model (infinitely correlated in one dimension)

@ A presumably infinite-disorder g-independent fixed point is observed in the
isotropically correlated g-state Potts model.
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New (preliminary) results: aperiodic Potts models

Partial summary

@ Homogeneous disorder leads a new g-dependent random fixed point

@ Perturbative RG finds another random fixed point with algebraically
correlated disorder (v = 2/a)

@ A different (g-independent) infinite-disorder fixed point in the McCoy-Wu
model (infinitely correlated in one dimension)

@ A presumably infinite-disorder g-independent fixed point is observed in the
isotropically correlated g-state Potts model.

Old problem/New question:
What about aperiodic modulation of the couplings ?

@ Monte Carlo simulations observed g-dependent critical exponents

@ SDRG results were recently shown to give results for the Ising model
comptible with free fermions techniques.
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New (preliminary) results: aperiodic Potts models

More convenient to study the anisotropic extreme limit:

_6H = Z (Jh(X)éo'x,y)UXJrl,y + JV(X)(SUX,y’Ux,y+1)’ Jh - +QO’ JV - O
X,y

The transfer matrix tends towards a quantum evolution operator

J J
) _ eﬁ > I:TV(SU/{,U;+1+7V65i’af+1+'lh60/‘,0’{:|

! / .
T(01,0,...;01,02,...

—  {01,0%,.. .|e_5""|01,027 .
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New (preliminary) results: aperiodic Potts models

More convenient to study the anisotropic extreme limit:

—BH = Z (In(X)00, ,oiry + I (X0 oyin)s  In— +00, 0y =0
X’.y

The transfer matrix tends towards a quantum evolution operator

T(0],05,...;01,02,...) — {(01,0%, .. .|e_’8H|01,027 .

with the quantum Potts hamiltonian

g—1
H=— Z Z [Ji(2)7 (Qi1) ™7 + hiN7]
i o=1
where, for g = 4 for instance,
0 0 0 1 1 0 0 O
N 1 0 0 O ~ 0 w 0 O
N=1o0 10 ol Q=10 0 w? o0
0 010 00 0
and .
2im
w=e
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New (preliminary) results: aperiodic Potts models

Strong Disorder Renormalization Group

A= quZ_l [J(€2)7 (Qig1) " + miN7 ]
i o=1
hy 2 hy hy hs hs
)
J, J, J; Jy Is
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New (preliminary) results: aperiodic Potts models

Strong Disorder Renormalization Group

q—1
A== [h0) Cusa) ™ + hifly]
o=1

i
Step one: Find the largest coupling (say J3)
I A A A
I 2 3 4 5 6
JI JZ JJ’ J4 J5
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New (preliminary) results: aperiodic Potts models

Strong Disorder Renormalization Group

qg—1
A== [U(Q)7 (Qi1) ™" + hiNy]
i o=1
Step one: Find the largest coupling (say J3)
I S N R A
i 2 3 4 5 6
7,0, I, s
Step two: Find the g ground states of —J3 > _(23)7(Q4) 7

{|OO>> ‘11>a ceey |q - 17q - 1>}

Replace the two spins o3 and o4 by an effective Potts macro-spin.
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New (preliminary) results: aperiodic Potts models

Strong Disorder Renormalization Group

qg—1
A== [h()7 (Qisa) 7 + hi7]

i o=1

Step two: Find the g ground states of —J3 Zg(f)g)“(fu)“’ :

{100),[11),...,lg =1, = 1)}

Replace the two spins o3 and o4 by an effective Potts macro-spin.
Step three: Use perturbation theory to compute an effective transverse field
acting on the new macro-spin

heﬁ‘: 2h3h4
qJ3
Thl T h, /Lheﬂ ]h5 T hg
1 2 5 6
A A A A8
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New (preliminary) results: aperiodic Potts models

Strong Disorder Renormalization Group

g—1
A== [U()7 Q1) + hiN7]
i o=1
Similarly, a strong transverse field freezes a spin.
’h, ]hz [h3 /L/M ]h5 {hé
1 2 3 4
JI ‘12 ‘]3 J4 ‘15
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New (preliminary) results: aperiodic Potts models

Strong Disorder Renormalization Group

g—1
H:_E:E:u«m%QHJW+hwﬂ
i o=1
Similarly, a strong transverse field freezes a spin.
’ h ] hy y hs /Lhzx ] hs y hg
1 2 3 4
J, J, J, Jy Js

and an effective coupling between the nearest spins is induced

et _ 2434
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New (preliminary) results: aperiodic Potts models

The Paper-Folding sequence:
h h h h h

I, 7, 7, 7, 7, J, 7, 7, 7, J, 7, 7, 7, 7, 7,

Marginal for g = 2 (Ising) and relevant perturbation for g > 2 (Luck criterion).
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New (preliminary) results: aperiodic Potts models

The Paper-Folding sequence:
h h h h h

t Lh th l t l t Lh Ih Lh Ih 111 Lh 111 Lh 111 Lh
J; J; J, J; J, J, J, J; J; J; J, J, J; J, J, J;

Marginal for g = 2 (Ising) and relevant perturbation for g > 2 (Luck criterion).

Magnetic scaling dimension ¢ = 1 — /v independent of g for g > 2 and
r=J1/J, > 2.5 (contradicts Monte Carlo simulations!)
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New (preliminary) results: aperiodic Potts models

The Paper-Folding sequence:
h h h h h

t Lh Ih L t L t Lh t Ll t 111 L 111 Lh 111 Lh
J; J; J, J; 7, J, J, J, J, J, J, 7,

J;

7, J,

Marginal for g = 2 (Ising) and relevant perturbation for g > 2 (Luck criterion).

Magnetic scaling dimension ¢ = 1 — /v independent of g for g > 2 and
r=J1/J, > 2.5 (contradicts Monte Carlo simulations!)

084 T T T T 4 T
—— a=2 a2
0.83 |- o=t B 35 a=4 |
- =6 =6
o g8 . =8
082 |- - Exact
25 g
£ o081 —
2 i
08 B
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079 |- B L i
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1r

1

BUT dynamical exponent z depends on q !
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New (preliminary) results: aperiodic Potts models

Can we trust SDRG?
SDRG works only if couplings are broadly distributed at the fixed point (for

perturbation theory to hold).

Proba.

4
3 -3
4> -1 ?og(J/Omega)

The ratio between the largest and second-largest couplings does not increase!
Not an infinite-disorder fixed point!?
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New (preliminary) results: aperiodic Potts models

Density Matrix Renormalization Group
(Purely numerical, thermal fluctuations properly taken into account)
Large log-periodic oscillations.

r=1
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-0.1484
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New (preliminary) results: aperiodic Potts models

Density Matrix Renormalization Group
(Purely numerical, thermal fluctuations properly taken into account)
Large log-periodic oscillations.

=1
-0.1273
r=2
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Magnetic scaling dimension given by SDRG recovered only in the limit
r= J1/J2 — +00.
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New (preliminary) results: aperiodic Potts models

r=1
-0.9963 |
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New (preliminary) results: aperiodic Potts models

18 T
=1 ——- ExactPF
107" - . .
-0.9963 g/n+2b/n
=2 16l * E1-E0_
-1.0871
r=3
0 1.2122 |
- 14 - -
2 =5
- -1.4220 N
b
100 L =8 | 12 - -
-1.6861
s 4
10'4 |- -
0.8 ! ! ! ! !
0 0.2 0.4 06 08 1

v/v+28/lv=1+z
DMRG is in agreement with free fermions calculations for any r.
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New (preliminary) results: aperiodic Potts models
Preliminary conclusions

For the Ising model

@ Paperfolding seq. is marginal: not an infinite-disorder fixed point but a line
of fixed points,

@ DMRG agrees with free fermions calculations,

@ SDRG predicts correct dynamical exponent for r > 1 and scaling dimension
only when r — 400

For the g > 2 Potts model

@ Similar behavior of SDRG flow than with Ising model. No flow towards an
infinite-disorder fixed point 7!

@ Dynamical exponent z depends on r and gq.
@ But g-independent magnetic exponents.

@ DMRG calculations will eventually converge...
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